Basic Arithmetic
Number Properties
Commutative Property of Addition
- Formula: a + b = b + a
- Example: 5 + 3 = 3 + 5 = 8
Commutative Property of Multiplication
- Formula: a × b = b × a
- Example: 4 × 6 = 6 × 4 = 24
Associative Property of Addition
- Formula: (a + b) + c = a + (b + c)
- Example: (2 + 3) + 4 = 2 + (3 + 4) = 9
Associative Property of Multiplication
- Formula: (a × b) × c = a × (b × c)
- Example: (2 × 3) × 4 = 2 × (3 × 4) = 24
Distributive Property
- Formula: a × (b + c) = (a × b) + (a × c)
- Example: 3 × (4 + 2) = (3 × 4) + (3 × 2) = 18
Basic Geometry
Perimeter Formulas
Rectangle
- Formula: P = 2(l + w)
- Example: For length = 5 cm, width = 3 cm
- P = 2(5 + 3) = 16 cm
Square
- Formula: P = 4s
- Example: For side = 4 cm
- P = 4 × 4 = 16 cm
Triangle
- Formula: P = a + b + c
- Example: For sides 3 cm, 4 cm, 5 cm
- P = 3 + 4 + 5 = 12 cm
Area Formulas
Rectangle
- Formula: A = l × w
- Example: For length = 6 cm, width = 4 cm
- A = 6 × 4 = 24 cm²
Square
- Formula: A = s²
- Example: For side = 5 cm
- A = 5² = 25 cm²
Triangle
- Formula: A = (b × h) ÷ 2
- Example: For base = 6 cm, height = 4 cm
- A = (6 × 4) ÷ 2 = 12 cm²
Circle
- Formula: A = πr²
- Example: For radius = 3 cm
- A = π × 3² ≈ 28.27 cm²
Algebra
Linear Equations
Slope Formula
- Formula: m = (y₂ – y₁)/(x₂ – x₁)
- Example: Points (2,3) and (4,7)
- m = (7 – 3)/(4 – 2) = 2
Point-Slope Form
- Formula: y – y₁ = m(x – x₁)
- Example: Point (2,3), slope = 2
- y – 3 = 2(x – 2)
Slope-Intercept Form
- Formula: y = mx + b
- Example: Slope = 2, y-intercept = 1
- y = 2x + 1
Exponent Rules
Product Rule
- Formula: aᵐ × aⁿ = aᵐ⁺ⁿ
- Example: 2³ × 2⁴ = 2⁷ = 128
Quotient Rule
- Formula: aᵐ ÷ aⁿ = aᵐ⁻ⁿ
- Example: 2⁵ ÷ 2³ = 2² = 4
Power Rule
- Formula: (aᵐ)ⁿ = aᵐⁿ
- Example: (2³)⁴ = 2¹² = 4,096
Geometry
Pythagorean Theorem
- Formula: a² + b² = c²
- Example: Right triangle with legs 3 and 4
- 3² + 4² = c²
- 9 + 16 = c²
- c = 5
Circle Formulas
Circumference
- Formula: C = 2πr
- Example: For radius = 5 cm
- C = 2π × 5 ≈ 31.42 cm
Arc Length
- Formula: L = (θ/360°) × 2πr
- Example: For radius = 6 cm, angle = 90°
- L = (90/360) × 2π × 6 ≈ 9.42 cm
Advanced Algebra
Quadratic Formula
- Formula: x = [-b ± √(b² – 4ac)] ÷ 2a
- Example: For 2x² + 5x – 3 = 0
- a = 2, b = 5, c = -3
- x = [-5 ± √(25 + 24)] ÷ 4
- x = (-5 ± 7) ÷ 4
- x = 0.5 or -3
Polynomial Factoring
Difference of Squares
- Formula: a² – b² = (a + b)(a – b)
- Example: x² – 16 = (x + 4)(x – 4)
Perfect Square Trinomial
- Formula: a² + 2ab + b² = (a + b)²
- Example: x² + 6x + 9 = (x + 3)²
Trigonometry
Basic Ratios
Sine
- Formula: sin θ = opposite/hypotenuse
- Example: In 30-60-90 triangle
- sin 30° = 1/2
Cosine
- Formula: cos θ = adjacent/hypotenuse
- Example: In 30-60-90 triangle
- cos 30° = √3/2
Tangent
- Formula: tan θ = opposite/adjacent
- Example: In 45-45-90 triangle
- tan 45° = 1
Trigonometric Identities
Pythagorean Identity
- Formula: sin²θ + cos²θ = 1
- Example: For θ = 30°
- sin²30° + cos²30° = (1/2)² + (√3/2)² = 1
Double Angle Formulas
- Formula: sin(2θ) = 2sin θ cos θ
- Example: sin(60°) = 2sin(30°)cos(30°)
- = 2(1/2)(√3/2) = √3/2
Calculus Basics
Basic Derivatives
Power Rule
- Formula: d/dx(xⁿ) = nxⁿ⁻¹
- Example: d/dx(x³) = 3x²
Product Rule
- Formula: d/dx[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
- Example: d/dx(x²sin x) = 2x sin x + x² cos x
Chain Rule
- Formula: d/dx[f(g(x))] = f'(g(x)) × g'(x)
- Example: d/dx(sin(x²))= 2x cos(x²)
Conic Sections
Parabola
- Formula: y = ax² + bx + c
- Example: y = 2x² – 4x + 1
- Vertex form: y = 2(x – 1)² – 1
- Vertex: (1, -1)
Ellipse
- Formula: (x²/a²) + (y²/b²) = 1
- Example: (x²/16) + (y²/9) = 1
- Center: (0,0)
- Vertices: (±4, 0)
- Co-vertices: (0, ±3)
Hyperbola
- Formula: (x²/a²) – (y²/b²) = 1
- Example: (x²/16) – (y²/9) = 1
- Asymptotes: y = ±(3/4)x
- Vertices: (±4, 0)
